
Introduction to Arduino IDE and getting started with the ESP32 microcontroller

Part 2: Developing Arduino sketches with multiple files

Dr Ian Grout

Department of Electronic and Computer Engineering

Faculty of Science and Engineering

University of Limerick

Limerick, V94 T9PX

Ireland

Email: Ian.Grout@ul.ie

Introduction

• Developing Arduino sketches with multiple files:

1. The basics of an Arduino sketch.

2. Folder and file structure.

3. Managing a project: folders and files. Importance of commenting and formatting code.

4. Walkthrough example: developing an Arduino sketch with multiple files.

Single file Arduino Sketch

• When a new Arduino Sketch is created, it is a
folder containing a single .ino file.

• The Sketch should be saved to a suitable folder
on the user’s computer.

• For smaller coding projects, a single .ino file
containing all code would be OK as the single file
would not become too large and complicated to
develop and manage.

• For larger coding projects, the code should be
separated into linked smaller .ino files.

Commenting:

// Single line comment (C++ style)
/* … */ Multi-line comment (C style)

More complex sketches will require multiple files

• For larger coding projects, the code should be separated into linked smaller .ino files.

• The benefits for this approach include:

• The overall coding project is easier to manage and supports modularisation of the code.

• Supports code re-use in different coding project.

• Easier to understand the code operation.

• Supports documentation of the code.

• Easier to create and debug the code.

Creating additional .ino files

• To create an additional .ino file, select the three dots (top right of the
window), and select New Tab.

• In the pop-up window that appears, type in a suitable file name and
press OK.

• The new file appears as a new tab and can be edited. When the top
level .ino file is compiled (the top level .ino file has the same name
as the Sketch), the other .ino files are automatically available.

• For more advanced projects, compare this approach to standard
C/C++ coding approaches.

Uses

• Use additional .ino files to make the coding project more manageable and understandable:

1. Create multiple, smaller files.

2. Use additional .ino files for functions that are called from other .ino files.

3. Group functions together that should be together (e.g., serial port functions).

4. Create a new file that acts as a README file for documentation purposes.

Any questions?

