

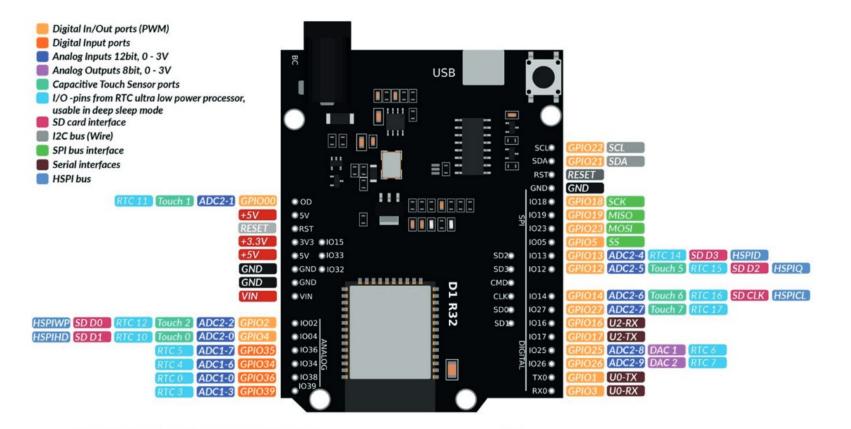
Introduction to Arduino IDE and getting started with the ESP32 microcontroller

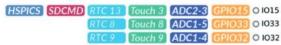
Part 3: Summary of the different pins on the microcontroller

Dr Ian Grout Department of Electronic and Computer Engineering Faculty of Science and Engineering University of Limerick Limerick, V94 T9PX Ireland

Email: Ian.Grout@ul.ie

Introduction


- Summary of the different pins on the microcontroller:
 - Power supply, digital GPIO, analogue I/O, UART/USART, SPI, I²C,)
 - ... and their uses:
 - 1. Connecting the microcontroller to external peripherals:
 - 1. Power supply.
 - 2. Digital GPIO (General Purpose I/O).
 - 3. Analogue I/O.
 - 4. UART (Universal asynchronous receiver/transmitter) / USART (Universal Synchronous/Asynchronous Receiver/Transmitter).
 - 5. SPI (Serial Peripheral Interface).
 - 6. I²C (Inter-Integrated Circuit (IC)).
 - 2. I/O pins on the ESP32:
 - 1. The available I/O pins.
 - 2. Serial communications: using the UART.

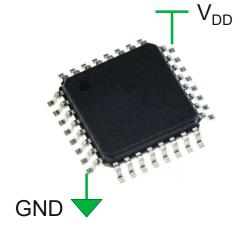


ESP32 D1 R32 Board Pinout

D1 R32 Board Pinout

SD2 SD3 CMD O Internal Flash Memory control pins. CLK O Not for use! SD0 SD10

Image source:

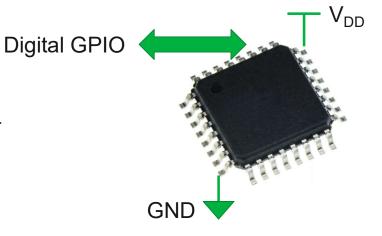

https://bpb-ap-

ng

se2.wpmucdn.com/bl ogs.auckland.ac.nz/di st/9/698/files/2021/08 /2 Pinout D1 R32.p

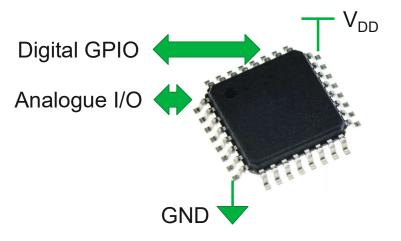
Power supply

- Always required for an IC to work!
- Most microcontrollers will operate on a standard power supply voltage:
 - +5 V
 - +3.3 V
- Some microcontrollers will operate on a power supply voltage of less than 3.3 V.
- The ESP32 operates on a +3.3 V power supply.
- It is essential to operate the microcontroller on the correct power supply voltage and to connect peripheral devices to the microcontroller pins that operate on the same voltage levels.
- Some ICs have separate power supplies for digital and analogue circuitry.



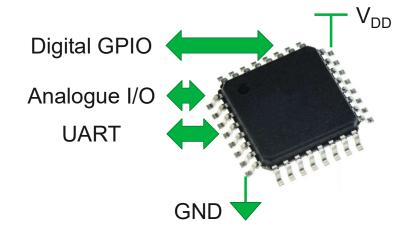
Digital GPIO

- Digital pins for general use (general purpose.
- Can be input or output (IO) ... or bidirectional (both input and output).
- Creates two logic level outputs:
 - Logic **0** = GND (or 0 V).
 - Logic $1 = V_{DD}$ (positive power supply, typically +3.3 V or +5 V).
- In Arduino terminology:
 - Logic 0 = LOW.
 - Logic 1 = HIGH.



Analogue I/O

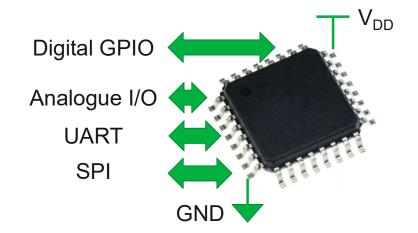
- Provide an analogue voltage output from the microcontroller.
- Analogue voltage output from a microcontroller can be created using:
 - 1. An in-built Digital to Analogue Converter (DAC) ... within the microcontroller if available.
 - 2. An external DAC connected to digital pins on the microcontroller.
 - 3. Using a PWM (Pulse Width Modulation) digital output that is then low-pass filtered using an analogue low-pass filter.

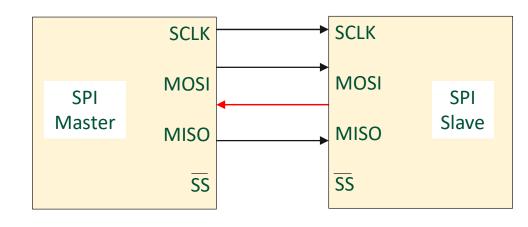




UART

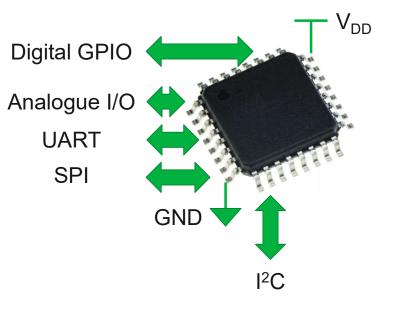
- UART (Universal asynchronous receiver/transmitter):
 - Hardware device.
 - Used for asynchronous serial communications.
 - Microcontrollers will typically incorporate one or possibly two UARTs.
 - The two devices communicating with a UART will need to use the same communications data transmission/reception speed (the Baud rate) based on an internal clock frequency.
 - In older computers, the UART would have been used to connect to a RS-232 port (with voltage level translation between the microcontroller and the computer RS-232 port).
 - In computers used today, USB communications is required and the UART would be connected to the computer USB port using a UART-to-USB converter IC.
- USART (Universal Synchronous/Asynchronous Receiver/Transmitter):
 - Hardware device.
 - Used for synchronous serial communications.
 - The data transmission/reception clock frequency is embedded within the signal.



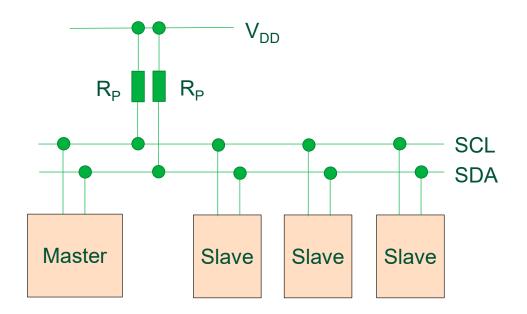


SPI

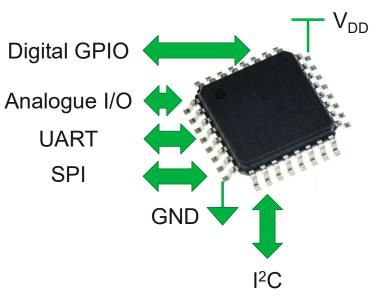
- Serial Peripheral Interface (SPI) is an interface bus commonly used to communicate data and instructions between microcontrollers and small peripheral devices (Integrated Circuits (ICs)) in embedded systems.
- A synchronous serial communication interface specification used for short-distance communication, primarily in embedded systems.
- The interface has a master device and one or more slave devices. Four signals involved:
 - SCLK
 - Serial Clock (output from the master).
 - MOSI
 - Master Out Slave In (data output from the master).
 - MISO
 - Master In Slave Out (data output from the slave).
 - SS
 - Slave Select (often active low, output from the master).



$I^{2}C(1)$

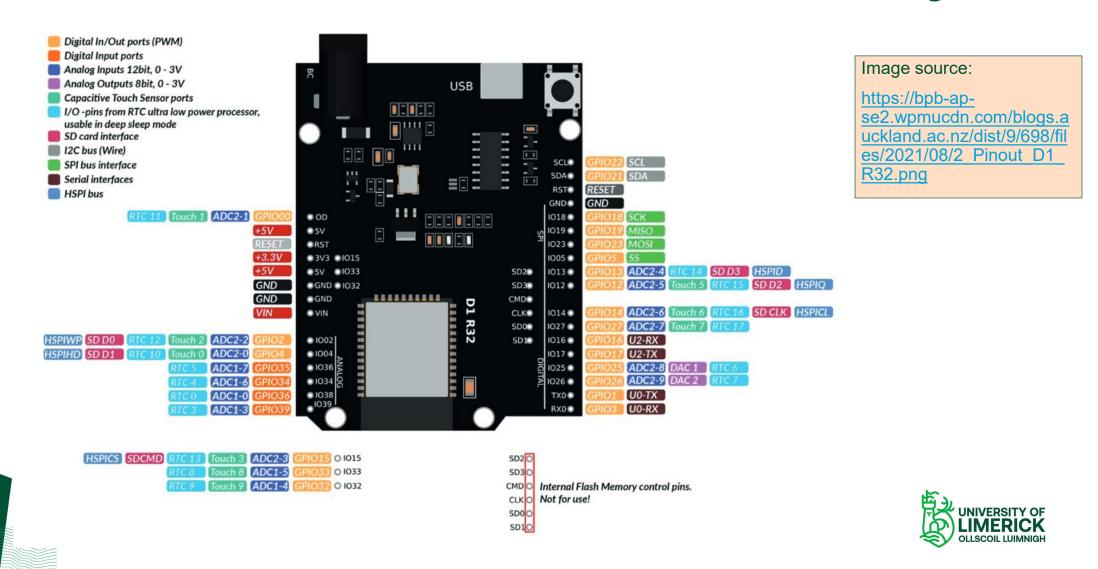

- I²C stands for Inter-IC bus. Developed by Philips.
- IC integrated circuit.
- Developed to connect microprocessors and other ICs on a PCB (printed circuit board).
- Serial communications that connects devices with two wires that would otherwise have been connected using parallel communications -> saves on device pins, interconnects, and PCB area.
- Requires two wires:
 - 1. SDA Serial Data.
 - 2. SCL Serial Clock.
- All devices share these two wires. Each device has an exclusive, unique address.

$I^{2}C(2)$


- Simple to use.
- There can be more than one master.
- Each device has a 7-bit address, so a single I²C network can theoretically support up to 128 devices.
- Only an upper bus speed is defined.
- Only two wires with pull-up resistors are required to connect the I²C devices on an I²C network.

Pins with multiple possible uses

- The pins on the microcontroller used for digital and analogue I/O can be:
 - Dedicated to a single use.
 - Programmable so that the pin can be used for one of two or more possible uses.



ESP32

D1 R32 Board Pinout

University of Limerick, Limerick, V94 T9PX, Ireland. Ollscoil Luimnigh, Luimneach, V94 T9PX, Éire. +353 (0) 61 202020

ul.ie

Any questions?