
Introduction to Arduino IDE and getting started with the ESP32 microcontroller

Part 4: Receiving strings from the computer and string
manipulation to extract values from the string

Dr Ian Grout

Department of Electronic and Computer Engineering

Faculty of Science and Engineering

University of Limerick

Limerick, V94 T9PX

Ireland

Email: Ian.Grout@ul.ie

Introduction

• Receiving strings from the computer and string manipulation to extract values from the string. Walk-
through example. Send the extracted values back to the PC:

1. The microcontroller receiving and sending serial data using serial communications (UART).

2. The microcontroller receiving strings.

3. The microcontroller extracting values from a string.

4. The microcontroller formatting and transmitting data.

5. Walkthrough example using the Arduino IDE Serial Monitor and then in Python.

Receiving and transmitting a single byte (1)
• Arduino serial communication function:

• https://www.arduino.cc/reference/en/language/
functions/communication/serial/

• The microcontroller UART set-up with a Baud rate
of 9600.

• The UART is checked (polled) to see if a byte has
been received. If received, the byte is read and
transmitted back to the computer as the value and
also as the ASCII character code.

• The code is in the Arduino Sketch
part_4_single_byte.

• Watch the video part_4_single_byte_video.mp4 to
see the code in operation. This code also toggles
the on-board LED when a byte is received (the LED
code is not shown in the code to the right).

int incomingByte = 0;

void setup(void)
{

Serial.begin(9600);

}

void loop(void)
{

if (Serial.available() > 0)
{

incomingByte = Serial.read();
Serial.print("Byte received: ");
Serial.println(incomingByte);
Serial.print("Byte received ASCII code decimal: ");
Serial.println(incomingByte, DEC);
Serial.print("Byte received ASCII code hexadecimal: ")
Serial.println(incomingByte, HEX);

}

}

Receiving and transmitting a single byte (2)

Serial.print("Byte received: ");
Serial.println(incomingByte);
Serial.print("Byte received: ");
Serial.println(char(incomingByte));
Serial.print("Byte received ASCII code decimal: ");
Serial.println(incomingByte, DEC);
Serial.print("Byte received ASCII code hexadecimal: ");
Serial.println(incomingByte, HEX);

ASCII code

• ASCII: American Standard Code for Information
Interchange.

• ASCII is a 7-bit character set containing 128
characters.

• Extended ASCII is an 8-bit character set
containing 256 characters.

• ASCII Table:
• https://commons.wikimedia.org/wiki/File:AS

CII-Table-wide.pdf

Receiving multiple bytes with a termination character (1)

• Serial communications will send data one byte at a time.

• Where multiple bytes are to be received by the microcontroller in “one go”, such as in a string of text,
each byte in the string would be received and put into a character array variable within the code (a String
in Arduino code).

• The microcontroller needs to know when the string ends, so a termination character, such as the end of
line character (\n) will be used to identify the end of the string. For example:

This is a string\n

• T is transmitted first and \n is transmitted last.

• The Arduino Serial Monitor can insert the \n character or the code writer can insert this with code.

Receiving multiple bytes with a termination character (2)

void loop(void)
{

serial_event();

if (string_complete)
{
Serial.print("String received: ");
Serial.println(input_string);

digitalWrite(ON_BOARD_LED, !digitalRead(ON_BOARD_LED));

input_string = "";
string_complete = false;

} else
{
}

}

String input_string = "";

boolean string_complete = false;

Receiving multiple bytes with a termination character (3)

void serial_event(void)
{

while (Serial.available())
{

char in_char = (char)Serial.read();
input_string += in_char;

if (in_char == '\n')
{
string_complete = true;

}

}

}

void loop(void)
{

serial_event();

if (string_complete)
{

…

input_string = "";
string_complete = false;

} else
{
}

}

Receiving multiple bytes with a termination character (4)

• Arduino serial communication function:
• https://www.arduino.cc/reference/en/language/fun

ctions/communication/serial/

• The microcontroller UART set-up with a Baud rate of
9600.

• The UART is checked (polled) to see if a byte has
been received. If received, the byte is read and
transmitted back to the computer as the value and
also as the ASCII character code.

• The code is in the Arduino Sketch
part_4_multiple_bytes.

• Watch the video part_4_multiple_bytes_video.mp4 to
see the code in operation. This code also toggles the
on-board LED when a byte is received (the LED code
is not shown in the code to the right).

Replacing the Arduino Serial Monitor with Python
import time
import serial

com_port = ‘COM8'

def main():

ser = serial.Serial(com_port, timeout=5)
ser.baudrate = 9600
ser.flush()
time.sleep(5)
print(ser.name)

value_to_send = 'Hello\n'
ser.write(value_to_send.encode())
line = ser.readline().decode('latin-1')[:-1]
print(value_to_send)
print(line)
line = ser.readline().decode('latin-1')[:-1]

time.sleep(1)

value_to_send = 'Goodbye\n'
ser.write(value_to_send.encode())
line = ser.readline().decode('latin-1')[:-1]
print(value_to_send)
print(line)
line = ser.readline().decode('latin-1')[:-1]

if __name__ == '__main__':

main()

• The Arduino IDE Serial Monitor is useful for initial
prototyping and debugging the design code.

• For more advanced work, other software languages and
tools can be used.

• For example, using Python to access the serial port as
shown in the example to the left.

• This example uses pySerial to access the serial port.
This is the same COM PORT as set in the Arduino IDE.

• In the code, COM8 is used on a Windows platform. This
should be replaced with the actual COM PORT number
used.

Replacing the Arduino Serial Monitor with Python

• Python scripts can be created and run using different
software tools.

• For example, the image to the right shows the Python
script developed and using PyCharm Community
Edition.

• The Python script is part_4_python.py .

• Watch the video part_4_python_video to see Arduino
IDE and PyCharm in use.

Any questions?

