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Introduction

• Receiving strings from the computer and string manipulation to extract values from the string. Walk-
through example. Send the extracted values back to the PC:

1. The microcontroller receiving and sending serial data using serial communications (UART).

2. The microcontroller receiving strings.

3. The microcontroller extracting values from a string.

4. The microcontroller formatting and transmitting data.

5. Walkthrough example using the Arduino IDE Serial Monitor and then in Python.



Receiving and transmitting a single byte (1)
• Arduino serial communication function:

• https://www.arduino.cc/reference/en/language/
functions/communication/serial/

• The microcontroller UART set-up with a Baud rate
of 9600.

• The UART is checked (polled) to see if a byte has
been received. If received, the byte is read and
transmitted back to the computer as the value and
also as the ASCII character code.

• The code is in the Arduino Sketch
part_4_single_byte.

• Watch the video part_4_single_byte_video.mp4 to
see the code in operation. This code also toggles
the on-board LED when a byte is received (the LED
code is not shown in the code to the right).

int incomingByte = 0;

void setup( void )
{

Serial.begin(9600);

}

void loop( void )
{

if ( Serial.available() > 0 )
{

incomingByte = Serial.read();
Serial.print( "Byte received: " );
Serial.println( incomingByte );
Serial.print( "Byte received ASCII code decimal: " );
Serial.println( incomingByte, DEC );
Serial.print( "Byte received ASCII code hexadecimal: " )
Serial.println( incomingByte, HEX );

}

}



Receiving and transmitting a single byte (2)

Serial.print( "Byte received: " );
Serial.println( incomingByte );
Serial.print( "Byte received: " );
Serial.println( char( incomingByte ) ); 
Serial.print( "Byte received ASCII code decimal: " );
Serial.println( incomingByte, DEC );
Serial.print( "Byte received ASCII code hexadecimal: " );
Serial.println( incomingByte, HEX );



ASCII code

• ASCII: American Standard Code for Information
Interchange.

• ASCII is a 7-bit character set containing 128
characters.

• Extended ASCII is an 8-bit character set
containing 256 characters.

• ASCII Table:
• https://commons.wikimedia.org/wiki/File:AS

CII-Table-wide.pdf



Receiving multiple bytes with a termination character (1)

• Serial communications will send data one byte at a time.

• Where multiple bytes are to be received by the microcontroller in “one go”, such as in a string of text,
each byte in the string would be received and put into a character array variable within the code (a String
in Arduino code).

• The microcontroller needs to know when the string ends, so a termination character, such as the end of
line character ( \n ) will be used to identify the end of the string. For example:

This is a string\n

• T is transmitted first and \n is transmitted last.

• The Arduino Serial Monitor can insert the \n character or the code writer can insert this with code.



Receiving multiple bytes with a termination character (2)

void loop( void )
{

serial_event();

if ( string_complete )
{
Serial.print( "String received: " );
Serial.println( input_string );

digitalWrite( ON_BOARD_LED, !digitalRead( ON_BOARD_LED ) );

input_string = "";
string_complete = false; 

} else
{
}

}

String input_string = "";

boolean string_complete = false;



Receiving multiple bytes with a termination character (3)

void serial_event( void )
{

while ( Serial.available() )
{

char in_char = ( char )Serial.read();
input_string += in_char;

if ( in_char == '\n' )
{
string_complete = true;

}

}

}

void loop( void )
{

serial_event();

if ( string_complete )
{

…

input_string = "";
string_complete = false; 

} else
{
}

}



Receiving multiple bytes with a termination character (4)

• Arduino serial communication function:
• https://www.arduino.cc/reference/en/language/fun

ctions/communication/serial/

• The microcontroller UART set-up with a Baud rate of
9600.

• The UART is checked (polled) to see if a byte has
been received. If received, the byte is read and
transmitted back to the computer as the value and
also as the ASCII character code.

• The code is in the Arduino Sketch
part_4_multiple_bytes.

• Watch the video part_4_multiple_bytes_video.mp4 to
see the code in operation. This code also toggles the
on-board LED when a byte is received (the LED code
is not shown in the code to the right).



Replacing the Arduino Serial Monitor with Python
import time
import serial

com_port = ‘COM8'

def main():

ser = serial.Serial(com_port, timeout=5)
ser.baudrate = 9600
ser.flush()
time.sleep(5)
print(ser.name)

value_to_send = 'Hello\n'
ser.write(value_to_send.encode())
line = ser.readline().decode('latin-1')[:-1]
print(value_to_send)
print(line)
line = ser.readline().decode('latin-1')[:-1]

time.sleep(1)

value_to_send = 'Goodbye\n'
ser.write(value_to_send.encode())
line = ser.readline().decode('latin-1')[:-1]
print(value_to_send)
print(line)
line = ser.readline().decode('latin-1')[:-1]

if __name__ == '__main__':

main()

• The Arduino IDE Serial Monitor is useful for initial
prototyping and debugging the design code.

• For more advanced work, other software languages and
tools can be used.

• For example, using Python to access the serial port as
shown in the example to the left.

• This example uses pySerial to access the serial port.
This is the same COM PORT as set in the Arduino IDE.

• In the code, COM8 is used on a Windows platform. This
should be replaced with the actual COM PORT number
used.



Replacing the Arduino Serial Monitor with Python

• Python scripts can be created and run using different
software tools.

• For example, the image to the right shows the Python
script developed and using PyCharm Community
Edition.

• The Python script is part_4_python.py .

• Watch the video part_4_python_video to see Arduino
IDE and PyCharm in use.



Any questions?


