
Introduction to

Microcontrollers

Content

2

What is a microcontroller??

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

Content

3

What is a microcontroller??

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

What is a
microcontroller??

• A Microcontroller is a VLSI (Very Large
Scale Integration) Integrated Circuit
(IC) that contains electronic computing
unit and logic unit (combinedly known
as CPU), Memory (Program Memory
and Data Memory), I/O Ports (Input /
Output Ports) and few other
components integrated on a single
chip.

4

What is a
microcontroller??

• An embedded system relies on a
combination of hardware and
software implementation to fulfill a
specific function that imposes time
constrains.

5

Microprocessor, Microcontroller,
SoC

6

Microprocessor, Microcontroller,
SoC

7

• A Microprocessor is an Integrated
Circuit (IC) that contains the Central
Processing Unit (CPU).

Microprocessor, Microcontroller,
SoC

8

• A Microprocessor is an Integrated
Circuit (IC) that contains the Central
Processing Unit (CPU).

Microprocessor, Microcontroller,
SoC

9

• It’s a full computer system on a chip,
even if its resources are far more
limited than of a desktop personal
computer.

Microprocessor, Microcontroller,
SoC

10

• It’s a full computer system on a chip,
even if its resources are far more
limited than of a desktop personal
computer.

Microprocessor, Microcontroller,
SoC

11

• It’s a full computer system on a chip,
even if its resources are far more
limited than of a desktop personal
computer.

Microprocessor, Microcontroller,
SoC

12

• A System-on-Chip (SoC) is a silicon chip
that contains one or more processor
cores — microprocessors (MPUs)
and/or microcontrollers (MCUs)
and/or digital signal processors (DSPs)
— along with on-chip memory,
hardware accelerator functions,
peripheral functions, and (potentially)
all sorts of other “stuff.”

Microprocessor, Microcontroller,
SoC, ASIC

13

• ASIC (Application Specific Integrated
Circuit) is a chip that is custom
designed for a specific application.
Usually designed by a company for a
particular purpose or customer. This
can be customized for a particular
application, ensuring it meets the
power and performance requirements
of that specific application.

Content

14

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

15

What is need to power up a
microcontroller

16

• What is needed to start up a
microcontroller?

What is need to power up a
microcontroller

17

• What is needed to start up a
microcontroller?

• Supply voltage: depends on the
microcontroller technology and is needed
to power on the integrated electronics.

1.1 V … 5V

1.1 V … 5V

What is need to power up a
microcontroller

18

• What is needed to start up a
microcontroller?

• Supply voltage

• Pull up the reset pin: It is needed to wake
up the microcontroller from the reset
state.

1.1 V … 5V

1.1 V … 5V

Button

1.1 V … 5V

What is need to power up a
microcontroller

19

• What is needed to start up a
microcontroller?

• Supply voltage

• Pull up the reset pin

• Microcontroller heartbeat:
Microcontrollers and microprocessors
depend on oscillators for basic timing and
control. Oscillators are responsible for
supplying the clock signals in
microcontrollers. All the instructions
executed by microcontrollers are in
synchronization with clock signals.

1.1 V … 5V

1.1 V … 5V

Button

1.1 V … 5V

What is need to power up a
microcontroller

20

• What is needed to start up a
microcontroller?

• Supply voltage

• Pull up the reset pin

• Microcontroller heartbeat:
Microcontrollers and microprocessors
depend on oscillators for basic timing and
control. Oscillators are responsible for
supplying the clock signals in
microcontrollers. All the instructions
executed by microcontrollers are in
synchronization with clock signals.

1.1 V … 5V

1.1 V … 5V

Button

1.1 V … 5V

What is need to power up a
microcontroller

21

• What is needed to start up a
microcontroller?

• Supply voltage

• Pull up the reset pin

• Microcontroller heartbeat

• Where is the feature that allows it to
think?

1.1 V … 5V

1.1 V … 5V

Button

1.1 V … 5V

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

22

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

23

24

Volatile Memory Non-Volatile Memory

Description Loses all the data
when power is lost

Retains all the data when
power cycled

Device uses Cache, Registers,
Static RAM (SRAM),
Dynamic RAM
(DRAM)

Hard disk drives,
EEPROM, Flash memory

When is used Temporary retention
of data

Permanent retention of
information

Microcontroller
memory

25

Microcontroller
memory - Flash

Pro Const

High-density storage Erasing data is limited to one sector at a time

Low cost

Fast read time Slower write times compared to RAM

Non-volatile, retaining data without power

Electrically reprogrammable Finite number of write/erase cycles

• Also know as Program Memory

• Flash memory is widely used in embedded
systems due to its numerous advantages,
such as its ability to maintain data without
power and quick access to stored data.

26

Microcontroller
memory - RAM

Pro Const

Greater number of write/erase cycles compared to Flash Higher cost-per-byte compared to DRAM and FLASH

Fast access times (very fast read/write speed)
Consumes more power than DRAM, and even more
then FLASH

No refresh cycles required, unlike DRAM
Requires more transistors per memory cell, resulting
in a larger chip size

Smallest write/read size (byte level)

• Also know as data memory

• Static Random Access Memory (SRAM) is
a type of volatile memory used in
embedded systems.

27

Microcontroller
memory - EEPROM

Pro Const

Greater number of write/erase cycles compared to Flash Higher cost-per-byte compared to DRAM and FLASH

Fast access times (very fast read/write speed)
Consumes more power than DRAM, and even more
then FLASH

No refresh cycles required, unlike DRAM
Requires more transistors per memory cell, resulting
in a larger chip size

Smallest write/read size (byte level)

• Electrically-Erasable-Programmable Read-
Only Memory (EEPROM) is a hybrid
memory device that combines features of
both RAM and ROM (Read Only Memory).

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

28

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

29

30

Microcontroller
peripherals - GPIO

• GPIO stands for General Purpose
Input/Output pin.

• General-Purpose Input/Output pins are
used for simple “on”/”off”
communication, such as reading a button
or turning on an LED.

• As an input, a GPIO pin tells the
microcontroller what voltage is present on
the pin (high or low voltage).

• As an output, the microcontroller chooses
to set the GPIO pin to output either a high
or low voltage.

31

Microcontroller
peripherals - GPIO

• GPIO stands for General Purpose
Input/Output pin.

• General-Purpose Input/Output pins are
used for simple “on”/”off”
communication, such as reading a button
or turning on an LED.

• As an input, a GPIO pin tells the
microcontroller what voltage is present on
the pin (high or low voltage).

• As an output, the microcontroller chooses
to set the GPIO pin to output either a high
or low voltage.

32

Microcontroller
peripherals - Timers

• Timing is a crucial part of any embedded
system, be it controlling the blinking rate
of the LEDs or controlling the sampling
rate of the ADCs, or a simple delay on the
source code.

• Timers can be used to keep track of time
(a timer can be set to “tick” every 1ms for
example), and counters can be used to
count pulses on an external pin for
example.

33

Microcontroller
peripherals - Timers

• Timing is a crucial part of any embedded
system, be it controlling the blinking rate
of the LEDs or controlling the sampling
rate of the ADCs, or a simple delay on the
source code.

• Timers can be used to keep track of time
(a timer can be set to “tick” every 1ms for
example), and counters can be used to
count pulses on an external pin for
example.

34

Microcontroller
peripherals - ADC

• ADCs are used to read an analog voltage
and convert it into a digital number which
the microprocessor can understand.

• These ADCs are devices that can sense the
voltage at a given GPIO pin. It takes an
analog voltage and converts it to a digital
number.

35

Microcontroller
peripherals - ADC

• ADCs are used to read an analog voltage
and convert it into a digital number which
the microprocessor can understand.

• These ADCs are devices that can sense the
voltage at a given GPIO pin. It takes an
analog voltage and converts it to a digital
number.

36

Microcontroller
peripherals - UART

• To talk to the external peripherals, some
sort of communication protocol is needed.
This is taken care of using devices called
serial communication controllers.

• One of the earliest communication
protocols was UART (Universal
Asynchronous Receiver and Transmitter).

• Peripherals are typically separate pieces of
circuitry which offload work from the
microprocessor.

37

Microcontroller peripherals –
Interrupt controllers

• Interrupt controllers listen to the
peripherals for events and reports to the
processor once an event occurs.

• Examples of events that can produce
interrupts include:

• GPIO reads 1 or 0

• Timer countdown reached 0

• Serial communication received a packet of data

• ADC conversion has ended.

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming a microcontroller

Debugging a microcontroller code

38

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming the microcontroller

Debugging a microcontroller code

39

40

Programming the
microcontroller

• An Integrated Development Environment
(IDE) for microcontrollers is a software
suite that provides a comprehensive set of
tools and features to facilitate the
development, programming, debugging,
and testing of embedded software for
microcontroller-based systems.

41

Programming the
microcontroller

• IDEs often come with tools for
programming (flashing) the
microcontroller's memory with the
compiled code. This is essential for loading
the firmware onto the target
microcontroller.

42

Programming the
microcontroller

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming the microcontroller

Debugging a microcontroller code

43

Content

What is a microcontroller?

Powering up a microcontroller

Microcontroller memory

Microcontroller peripherals

Programming the microcontroller

Debugging a microcontroller code

44

45

Debugging a
microcontroller code

• Debugging is the process of identifying,
analyzing, and resolving issues within a
software or hardware system.

46

Debugging a
microcontroller code

• Debugging is the process of identifying,
analyzing, and resolving issues within a
software or hardware system.

• Due to the specialized nature of
embedded systems, errors can lead to
severe consequences, such as equipment
malfunction or even safety hazards.

47

Debugging a
microcontroller code

• Common Debugging Challenges in
Embedded Systems:

• Limited Resources and Processing Power

• Real-Time Constrains

• Complex Hardware and Software Interactions

• Concurrency Issues

• Unique Platform-Specific Challenges

48

Debugging a microcontroller
code - Techniques

• The Blinky LED: Using an LED as a
microcontroller 'alive' indicator.

• By far the simplest debug tool is a resistor
and an LED of your choosing.

• Connected to a spare general-purpose I/O
pin (GPIO), it can be used like a latch at a
strategic point in the code to leave an
electronic breadcrumb.

49

Debugging a microcontroller
code - Techniques

• The Blinky LED: Using an LED as a
microcontroller 'alive' indicator.

• By far the simplest debug tool is a resistor
and an LED of your choosing.

• Connected to a spare general-purpose I/O
pin (GPIO), it can be used like a latch at a
strategic point in the code to leave an
electronic breadcrumb.

50

Debugging a microcontroller
code - Techniques

• Outputting Messages through serial
interfaces (UART) using printf().

• The code behind this function is quite
processor intensive.

• Assign different values to be written at
different points in your code.

51

Debugging a microcontroller
code - Techniques

• Instrumentation: place strategic
information into an array without / with
filtering.

• Observe the contents of the array at a
later time.

• The first step when instrumenting a dump
is to define a buffer in RAM to save the
debugging measurements.

52

Debugging a microcontroller
code - Techniques

• Debugging Interfaces: This opens access
to all the internal circuitry, including
memory, CPU registers, and all the
peripherals.

• While most microcontroller development
boards come with an onboard debugger,
there are still plenty that don’t.

53

Code example
void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port
only
 }

 Serial.println("Serial communication initialized.");

 // initialize digital pin LED_BUILTIN as an output.
 Serial.println("Initializing LED_BUILTIN as an output.");
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.println("Finished setting LED_BUILTIN as an output.");
}

// the loop function runs over and over again forever
void loop() {
 Serial.println("LED ON");
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
voltage level)
 delay(1000); // wait for a second

 Serial.println("LED OFF");
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the
voltage LOW
 delay(1000); // wait for a second
}

Some Questions

• Where are global variables and constant
values stored in a microcontroller?

• Is printf() suitable for debugging in an
embedded system?

• Are microprocessors and microcontrollers the
same thing?

54

Thank you for your
attention!

55

	Slide 1: Introduction to Microcontrollers
	Slide 2: Content
	Slide 3: Content
	Slide 4: What is a microcontroller??
	Slide 5: What is a microcontroller??
	Slide 6: Microprocessor, Microcontroller, SoC
	Slide 7: Microprocessor, Microcontroller, SoC
	Slide 8: Microprocessor, Microcontroller, SoC
	Slide 9: Microprocessor, Microcontroller, SoC
	Slide 10: Microprocessor, Microcontroller, SoC
	Slide 11: Microprocessor, Microcontroller, SoC
	Slide 12: Microprocessor, Microcontroller, SoC
	Slide 13: Microprocessor, Microcontroller, SoC, ASIC
	Slide 14: Content
	Slide 15: Content
	Slide 16: What is need to power up a microcontroller
	Slide 17: What is need to power up a microcontroller
	Slide 18: What is need to power up a microcontroller
	Slide 19: What is need to power up a microcontroller
	Slide 20: What is need to power up a microcontroller
	Slide 21: What is need to power up a microcontroller
	Slide 22: Content
	Slide 23: Content
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Content
	Slide 29: Content
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Content
	Slide 39: Content
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Content
	Slide 44: Content
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

